
Graphics Pipeline and Coordinate Systems 
Computer Graphics 

• We learn/explore the environment around us largely by seeing or viewing: 

with eyes, 

with cameras. 

• But biological vision/cameras have limitations 

We cannot see items that do not possess a physical form, e.g., something that no longer exists or a 
process that is invisible (e.g., air flow). 

Cameras cannot capture our imagination as do the artists. 

• Many applications require images to be created under afore-mentioned circumstances. 

• Computer technologies make this possible by imitating the biological viewing/optical 
imaging process. 

Instead of involving physical entities, “objects” being “viewed” are created and represented in form 
of models. 

Instead of using optical lens, geometric projections are used to simulate the behaviour of light rays 
when they pass through lenses/eyes – the viewing and rendering. 

• The history of CG research has been mainly about finding out accurate & efficient methods 
for creating (synthesising) realistic, artistic or other forms of images.  

To Create Images 
• We need to: 

1. Represent (describe) shapes in some forms, i.e., object models. 

2. Describe a view angle/point in terms of the position and orientation of the camera 
towards the objects –  a view platform.  

3. Simulate the optics of cameras by a process called projection  

emitting light rays from a particular point (centre of projection)  

tracing the paths of the light rays and determining where on the model the rays hit and where on 
the display screen pixels appear.  

Projections 
• Different forms of projections were developed in the study of geometry, painting and map-

making. 

• Perspective projection (eyes, cameras) 

• Orthographic (or parallel) projection (engineering drawing) 

• Others, e.g., cylindrical and conic projections (used in map making), oblique projection, and 
etc. 



Map Projections 

 

Orthographic Projection 

• Orthographic projection create an image by using light rays that are 

parallel to each other 

perpendicular to the viewing/image plane (oblique rays are used sometimes, but such a projection is 
not useful/convenient for creating images in CG) 

• The projection preserve object’s sizes, e.g., the height of the image of the candle is the 
height of the real candle. 

• A complete projection usually consists of three views: 

Top view, side view, front view 

See interface of 3D Studio Max 



 

Perspective Projection 
• Perspective projection 

All light rays pass through a particular point – the centre of projection. 

Perspective projection approximates the imaging processes of the lens in cameras and human eyes.  

 

Virtual Camera Model 
• In CG, for simplicity the image plane (film) on the other side of the projection centre and 

drop the concept of the box.  

• This leads to the virtual camera model (figure on the right), which defines the projection 
matrix (the relationships among the geometric quantities of the model).   



 

 

Perspective Distortions 
• Perspective projection produces distortions 

 

An image produced by a real camera. Where are the distortions?  

• Sizes are not preserved (distant objects appear smaller). 



• Parallelism are not normally preserved (they eventually intersect).  

 

Projections in CG 
• In CG, perspective and orthographic projections are used: 

Perspective: used to create images. It is the native way to create visually correct views  

Orthographic:  

As a design aid to help to perceive scene/objects correctly 

As an approximation of perspective projection to simplify computation 

 



Viewing Window 
• Like a real camera, the image plane of the virtual camera has a size. It has a different name, 

called viewing window  or clipping window.  

• The viewing window is a window against which a scene is clipped so that the objects or 
features outside the window are clipped (removed). 

 

Viewing Volume 
• The pyramid formed by the four bounding planes are called view volume, or pyramid of 

vision. 

 

Viewing Frustum 
• The scope of viewing can be further reduced by introducing near and far clipping planes – to 

remove the objects that are too far from or too close to the view plane 

• View frustum: view volume formed by adding near and far clipping planes to the pyramid of 
vision 



 

Shapes, Sizes, & Positions 
• To create a view (image) of scene, we have to decide whether or not an object is inside the 

view frustum  

To answer this question, we need to know the relative positions of the object and the camera (view 
frustum). 

• If yes, then we project it onto the virtual film. For this, we need to know: 

What are its shape and size? 

Where is the exact location the object with respect to the camera? 

• To facilitate all these calculations, we need to define a few coordinate systems. 

Coordinate Systems 
• Spaces and coordinate systems 

One “world coordinate system” in which to define positions/orientations of all items: camera, lights, 
objects,… 

One or more “local coordinate system” in which coordinates of objects are defined 

One “viewing” or “camera” coordinate system in which viewing frustum and image/view plane are 
defined 

 

World Coordinates 
• All the objects in the world have particular locations. These locations are specified  in terms 

of a unique coordinate system - the world or global coordinate system 



Local Coordinates 
• A local coordinate system is the coordinate system that is attached to an object. Each object 

(shapes, lights, camera, etc) will have its own local coordinate system. 

• It is easiest to define an individual object in a local coordinate system. 

For instance, a cube is easiest to define with faces parallel to the coordinate axis. 

• Defining objects in their local coordinate systems makes object reuse easier. 

The copy/paste operation would become very complicated if the object have been defined in global 
coordinates. 

Camera Coordinates 
• The coordinate system that is fixed to the camera. The origin of the coordinate system is 

normally at the centre of projection (may also on the image plane).  

• By convention, the axes of coordinate are assigned as: 

One orthogonal to the image plane, zc 

One pointing up, yc, and  

One pointing to the right, xc 

• Camera parameters are define in this space 

View point (position of projection centre) 

View volume/frustum 

View window (image plane) 

• Some operations carried out in this space: 

Culling or back surface removal (a surface is invisible if Ns•Zc<0). 

 

Create An Image 
• In principle, knowing the relative positions of an object (vertices/points representing its 

surface) we can apply the principle of perspective projection to create an image, as 
illustrated below. 



 

3D Screen Space 
• However, to make the depth calculation simpler (z-buffer algorithm), in a real graphics 

system, the view frustum is mapped to a cuboid called 3D screen space.  

• This is done through perspective transformation. 

 

• This is a abstract space with its dimensions being specified by mapping the view frustum 
into: 

2D (square) virtual screen (U:[-1,1], V: [-1,1]) 

1D of depth value (ZS:[0,1]) 

These called normalised coordinates 

• Task to do: 

hidden surface (obscured by other obj.) removal – surfaces that are obscured by others are removed 
e.g., using z-buffer algorithm. 

Rasterization – project visible points onto the virtual screen via orthographic projection 



 

Virtual Screen 
• This 3D screen space is then projected to a square virtual screen via orthogonal projection. 

• This virtual screen has aspect ratio (width to height ratio) of 1:1 (because 3D screen space 
has a size of 2x2x1) 

 

Physical Display 
• Then the image on the square virtual screen is transformed to an image on physical screen, 

which has a different aspect ratio, e.g., 4:3 or 16:9 

• In many cases, we don’t use the entire screen. Instead, we may a window to draw the 
graphics. In this case, we map the square virtual window to the actual window. 

 

Transformations and Pipeline 
• The spatial relationships betweens the coordinate systems, i.e. the positions and poses, are 

defined by transformations (rotations and translations). 

Defined as matrices. 



Transformations mean matrix operations. 

• In the process of rendering, the vertices (their coordinate values) will go through the 
following transformations and necessary processing is done in the relevant coordinate 
systems: 

Local coordinatesàworld coordinatesàcamera coordinatesà 3d screen à virtual screen à 
physical display 

• These processing steps are fixed and very efficient algorithms for them are implemented in 
software and hardware as standard. They form the graphics pipeline – the processing 
procedure and  and algorithms for rendering images. 

Graphics Pipeline 

 

Standards and APIs 
• Aim: to improve the software portability – make graphics implementations and applications 

hardware independent 

Software developers need standardised ways to implement typical graphics operations/functions, 
e.g., transformation 

Hardware manufacturers need a standard to develop hardware that support standard graphics 
functions 

 

APIs – OpenGL 
• GL – Graphics Library 

Initially implemented as the graphics library (GL) on Silicon Graphics workstations (SGI) in 1980s 

GL supported fast real-time rendering 



GL was soon extended to other hardware systems (OpenGL, 1991) and became the de facto 
standard 

OpenGL is the hardware-independent interface between application programs and hardware 
structure 

Efficient processing of 3-dimensional applications 

Implemented for different high-level languages, e.g., C, C++, VB, Fortran 

APIs – WebGL 
• WebGL is an API specifically developed for authoring 3D graphics for web applications in 

JavaScript. 

• It is a variation of OpenGL: 

  OpenGL à OpenGL ES à WebGL 

• Most browsers support it, e,g., Firefox, Chrome, Safari, IE 11, Opera 

API - Direct3D 
• It is a 3D graphics API for Windows platform and Game consoles (XBox) 

• It is one of the graphics APIs in DirectX (the other one is DirectDraw, for 2D graphics)  

• Direct3D Supports various hardware acceleration 

• A main competitor of OpenGL 

Info: Coordinate Systems in 3DS Max 
• 3DS Max provides different reference coordinate systems in which you can apply 

transformations to objects. 

Coordinate systems: 

Screen, view, World, Local, Gimbal (Euler angle), Grid, and Pick 

Transformations: translation, rotation, and scaling 

• These coordinate systems are used as a tool to assist you in your design, but not all are used 
in the graphics pipeline. 



 

“World” Coordinate System 
• World reference system and direction of the axes (as see from the front viewport) 

X points to right. 

Y: points into the screen away from you.  

Z: upward.  

 

“Local” Coordinate System 
• Local coordinate system is attached to an object and moves with the object when you move 

or rotate the object 



 

Modelling Using Geometric Primitives and Volume-Based Modelling 
Geometric Primitives 

• Geometric primitives: a range of geometric objects that are easy to define (described by a 
few parameters) and to manufacture, e.g. 

Cylinder. Parameters: radius & length. 

Sphere.  Parameters: radius. 

Cone.  Parameters: radius & height. 

Cube/cuboid. Parameters: lengths of its sides 

Etc 

• Primitives can be used in two ways: 

Hierarchical modelling (usually surface-based), or 

CSG (usually volume-based). 

Hierarchical Modelling 
• A hierarchical model combines several primitives (through transformations) into one linked 

complex object. 



 

• The overall structure of the object can be represented as a hierarchical graph that reflects 
the relationships between the geometric primitives or the sub-parts of the object. 

 

• The graph can be further detailed to contain other attributes of the primitives such as 
materials, textures, and transformations. 

 

Applications of Hierarchical Modelling 
• Hierarchical modelling usually find use in graphics applications written in high-level 

programming languages such as C and Java 

A useful technique for organise and construct articulated character for animation. 



Some APIs and scripting language that support hierarchical modelling: Java3D for Java, OpenGL for C 
(++), WebGL for JavScript, VRML. 

 

Limitations of Hierarchical Modelling 
• Hierarchical modelling is useful in applications where the organisation (connection 

relationships) of objects are important.  

• The modelling method can potentially cause some problems: 

Transparency problem (if some parts are transparent, the internal surfaces of the intersecting parts 
become visible) 

Efficiency problem (it takes time to process the internal surfaces, overlapping parts although they 
contribute nothing to the rendered graphics) 

Duplicated computation problem in mass/volume calculations that are necessary in physics-based 
simulation.   

Constructive Solid Geometry 
• CSG representation is a method that creates new objects by applying set (Boolean) 

operators and transformations on (solid) geometric primitives 

Union (OR,    ), Intersection (AND,    ), Difference/subtraction (AND NOT, -) 

Transformations: translation, rotation and scale  

• CSG representation is motivated by CAD and CAM (Computer Aided Design and 
Manufacturing) because machine tools, e.g., lathes and milling machines, are designed for 
manufacturing primitives. 



Examples 

• Intersection:  

The lens object is the intersection of the spheres (L = S1      S2, or S1 AND S2 )  

• Difference (subtraction): 

 a bowl shape object can be constructed in two steps 

Find the difference of S1 and S2  (A =S1 – S2, or S1 AND (NOT) S2 ) 

Find the difference of A and C: B=(S1 – S2) – C 

• Union: 

R = C1       C2      C3       C4   (read C1 OR C2 OR….)  

 

CSG: Shell v.s. Volume 
• Truly CSG objects are solids (instead of “shells” or “skins” as in the case of a polygon-mesh 

model) 

This causes rendering difficulties for renderers such as scanline renderers as they are designed to 
work with polygons. 

For such renderers, CSG objects must be converted into polygon-mesh models before being 
rendered. 

In principle, a raytracing renderer can render CSG objects directly. 

• In 3DS Max, objects obtained from Boolean operations are not solid. 

Volume Based Modelling 
• Some graphics applications require modelling of the skin/shell AND the internal structures of 

objects. 



• Such models cannot be achieved by surface-based methods: no matter how many layers of 
surfaces you have, the interior is hollow. 

Methods for representing volumes are needed.   

 

Octree 
• We call a method capable of representing solids being volumetric (v.s. surface presentation).  

• One of the volume-based modelling methods is the so called octree space-division method. 

• The name comes from the fact that the underlying structure of the resulted data can be 
organised as an octree – a tree structure that each of its nodes has eight branches. 

• The idea of the method is simple and intuitive: label the space occupied by an object. 

• The method involves the use of two schemes: 

• A tessellation scheme: the way to divide the world space of the objects into small 
pieces that we call voxels. 

• A labelling scheme: the way to enumerate the resulted voxels to create a numeric 
representation of a solid. 

World Space 
• The world space is the minimum envelope (bounding volume) of an object.  

• Rectangular boxes are often used as the world space for their simplicity for tessellation. For 
example, a rectangular box/cuboid can be used as the bounding volume of a human 
head.(See image above) 

Tessellation 
• Tessellation is crucial for the method: it affects the modelling and storage efficiency. 

• Different tessellation schemes can be used depending upon the nature of the objects being 
modelled. 

• A simplest tessellation scheme is to divide the world space into uniform rectangular (e.g., 
cubic) blocks/voxels. 



 

Uniform Tessellation 
• With this tessellation, an object, e.g., a sphere/cylinder, can be represented by the voxels it 

occupies/contains 

 

Non-Uniform Tessellation 
• For uniform tessellation, we have to balance between the accuracy of the representation 

and the amount of data created.    

• A more useful division scheme is to divide the space according to the actual structure of an 
object – finer division for the complex parts or regions of the object. 

• Non-uniform tessellation works by first dividing world space into eight octants that form 8 
“big” voxels and inspecting how the voxels represents the object and then deciding if any 
further division is made. 



 

• If a “big” voxel is fully occupied or not occupied at all by the object, no further division is 
necessary for that voxel. 

• If a voxel is partially occupied, further division is needed to decide the space/volume 
occupied by the object (e.g., the top-right voxel in the front side of the left figure, below). 

• The process is repeated recursively until the desired precision is achieved. 

 

Labelling 
• To describe the voxels that form an object and their positions in the world space, these 

voxels need to indexed. 

• A typical indexing scheme is to assign the indices of voxels in such an order: at a level of 
tessellation start from the top-left voxel, move to the right, then to the back, and to the 
bottom: 

 



The same labelling scheme is recursively applied to the voxels in the next level of 
tessellation/division, but the labels for next level of tessellation carry the index of the upper level in 
the form of a leading digit to identify the position of the parent voxel at the upper level, 

 

Octree-Labeling 

 

BSP 
• Binary Space Partition: developed from the same idea of quadtree  

• Applicable 2D, 3D or higher dimensional spaces 

• Useful for fast determining space occupancy for some applications 

Ray tracing rendering 

Collision detection 

Path planning 



 

Modelling with Polygon Mesh 
Evaluate 3D Modelling Methods 

• There are many ways to represent the shape and volume of an object 

So far, we have introduced hierarchical modelling, CSG, Octree. 

• There are many reasons to prefer one method to the others: 

How well/accurate it represents the objects of interest, 

How easy it is to render (or convert to polygons), 

How compact it is to store and transmit, 

How easy it is to create object models.  

by hand, procedurally, or automatically, 

how easy it is to interact with, 

modifying it, animating it. 

How easy it is to perform geometric computations on it 

Distance, intersection, normal vectors, curvature, … 

Modelling With Polygons 
• Among the various modelling methods, using polygonal facets to approximate curved 

surfaces is perhaps the most popular approach. In this approach, the connected polygonal 
facets forms a polygon mesh. 

• A polygon mesh is defined as a connected collection of polygonal facets along with the 
directional information (normal vector) that indicates the direction that each facet is facing.  

• The mesh forms the “skin” of an object, so the representation is surface-based (v.s. volume-
based, such as octree). 

Polygon Properties 
• Two requirements on polygon mesh: 

It must be “watertight”. This is to ensure that it forms a continuous surface, even when it is 
deformed. 



Every single polygon is planar - to make it easy to perform shading and rendering operations. 

• These requirements are equivalent to requiring a polygon (a facet) to have: 

straight edges, 

facets intersect each other only at edges and vertices, and 

edges only intersect at vertices 

 

Triangular Polygons 
If we use only triangles in building up polygon meshes, these requirements can be automatically 
met. 

In 3DS Max, you can draw shapes/polygons with more than three vertices, but the software 
automatically converts them into meshes of triangles. 

 

• In fact, 3DS Max supports two types of polygon meshes: 

Editable Mesh: inherited from early versions of 3DS Max and requires polygons to be triangular. 

Editable Poly that accepts non-triangular polygons, which improves user’s convenience and 
efficiency. 

Editable Mesh emphases vertex-based operations whereas Editable Poly focus more on polygon-
based operations and is believed to be more powerful.  

• To use a geometric primitive (shape) as the starting object for creating more generic shapes, 
the primitive, e.g., a sphere, must be converted to Editable Mesh or Editable Poly (choose 
from the menu by right clicking it).  

Surface Normals 
• In CG, a surface has two sides: inside and outside. A surface is only visible when we see it 

from outside. Seeing from inside, a surface is transparent. 



• The outside of a surface is indicated by its normal – a unit vector that is orthogonal to the 
surface where it adheres to and points away from the surface. 

 

Vectors 
• A vector is a math (geometry) entity that has a direction and length – you can think it as an 

arrow. 

• In math form, a vector is written as a column matrix: 

 

 

where vx, vy and vz are the components (called projections) of the vector along the coordinate axes. 

• Its length is calculated as 

 

Unit Vector & Normalisation 
 



• A unit vector is a vector that has a unit length, i.e., 

 

• We normally denote a unit vector with bold case letter n and its components by nx, ny and 
nz, i.e., 

 

• A vector that is not unit vector can be normalised to make it a unit one: For example, a 
vector V can be normalised:  

 

Dot Product of Vectors 
 

• The dot product of two vectors,v1 and v2 are defined as 

 

• Therefore we can estimate, from the value of the dot product, the range of the angle 
between two vectors:  

• if the dot product is 0, the angle between them is 90 degrees, 

• if the dot product is greater than 0, the angle is less than 90 degrees, 

• if the dot product is less than 0, the angle is greater than 90 degrees. 

 

Polygon Normal Vectors 
• In CG, a polygon is specified by its vertices, e.g., V1, V2, V3 
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• The convention for specifying normal direction is that if we visit the vertices in counter-
clockwise order, the direction of the normal always points to your side. 

 

• Therefore, normal direction depends on the order that the vertices are given (by the order 
of clicking them as in 3DS max or by the sequence of listing their coordinates in a program) 

• By the convention,  (V1, V2, V3),  (V2, V3, V1) or (V3, V1, V2) define the same triangle.  But 
(V1, V3, V2), (V3, V2, V1), or (V2, V1, V3) define a different triangle ( i.e., they face at 
different directions). 

Use of Normals 
• Normals help in deciding which surface is visible and which is not. This is important, because 

we don’t want to waste computing resources on invisible surfaces, i.e., back-facing surfaces 
(surface with n.Vview>0) – They are removed by operation called back surface culling. Which 
relies on surface normal and viewing direction. 

 

• They are also used in calculating the amount of light reflected from a surface – this is called 
shading (more on this topic in later lectures) 

Define A Polygon Mesh 
• There are typically two types of information included in a polygon-mesh model: 

• Geometric information: 

• The location of the vertices – coordinates. 



• The connectivity information - which vertices make up which polygon 
(vertex enumeration). 

• Associated data:  

• Values of normal vectors. These can be calculated from the coordinates of 
the enumerated vertices, so usually you don’t have to supply them explicitly. 

• Texture coordinates - coordinates for applying textures. 

• The collection of such information forms a polygon-mesh model and is stored in computers 
as data of some format. 

• Geometric information 

• Ordered list of coordinates of vertices. 

• Ordered list of the indices of the vertices that make up each individual 
polygons. 

• Associated data:  

• Ordered list of normal coordinates (in software packages like 3DS Max, they 
can be derived from the polygon lists if you don’t provide them, but you may 
need to provide them if you do CG by programming) 

• Ordered list of texture coordinates (not all polygon have textures) 

• This is what is called a CG model. What you see on a computer screen is the 
image/representation of a model, not the model itself! 



 



 



 

Another Example 

 

Advantages of Polygon  
Meshes 

• Polygons are the dominant force in 3D modelling: 



– Creating polygonal objects is straightforward (by specifying the vertices), and 
sometimes it offers the simplest solution. Eg, a cube or a cuboid. 

– Modelling can be quite accurate (although at the expenses of increased 
data/storage and degraded performance). 

– Almost everything can be turned into polygons. 

– We know how to render polygons quickly (graphics pipeline for polygon rendering).  

• Easy to represent (a sequence of vertices). 

• Simple for transformation (matrix operations). 

– Models in other representations are often converted into polygon mesh prior to 
rendering. 

Problems with Polygons 
• A polygon mesh is inherently an approximation. 

• Things like silhouettes/outlines can never be prefect without using very large numbers of 
polygons. 

 

• Interactive design could be a problem. 

– Dragging points around is time-consuming and hard to visualise. 

• Maintaining things like smoothness is difficult. 

• Hard to increase, or decrease, the resolution (some schemes can be used to split or fuse 
polygons). 

Issue of Resolutions 
• To achieve desirable realism, models of generic (freeform) objects often contain many 

polygons, e.g., the model of a rabbit contains a few thousand polygons.  

 



• Having too many polygons slows down rendering speed. 

• How can we speedup rendering without sacrificing visual realism/quality ? 

Varying Resolution 
• A possible solution is to use models of varying resolution: use high resolution models for 

close-up view and low resolution ones for distant view. 

• This technique is called varying level of detail (LOD)  

 

LOD 
• Varying LoD can be achieved by either: 

– maintaining multiple models of different resolutions for a single object, or 

– having a high resolution model that can adapt its resolution according to viewing 
conditions. 

• If well implemented, LoDs 

– speed up rendering, 

– is useful for progressive transmission of models across network. 

• Unfortunately, varying LoD is hard to achieve – it still is an research issue. 

Acquiring Polygon Mesh Model 
• Manual 

– In low level graphics modelling, e.g., using OpenGL, numeric data must be supplied 
via programming.   

– If CG software is used, e.g., 3DS Max, Maya, AutoCAD, tools are available for 
assisting model creation. 

• Automatic 

– Image-based modelling. 

• Various scanners. 



Image Based Modelling 

 

Scanner/Range Finder 
• Scanners and range finder can find distances to points on surfaces. 

• The distances are recorded as range data (or called depth map) that are used to reconstruct 
3D shapes.  

 

 

• Higher resolution can be achieved by 3D depth scanning (More precise detail is obtained) 



Representation of Curved Surface and Bezier Curves 
Introduction 

• Polygon meshes have provided good approximation to the surfaces of objects. 

• But the representation is not exact: 

– the edges of the polygons are straight lines, therefore the polygons are flat, 

– the representation is accurate only at the vertices of the polygons. 

Polygon Meshes Become Inadequate when:  

– We need smooth, accurate or exact representations to reduce the defects in 
shadows, highlights and outlines. 

– We want more efficient ways for shape editing   

• Pulling vertices around is difficult and results in peaks/spikes and unwanted 
deformations.  

– We use graphical model to control high precision manufacturing, e.g., for CAD/CAM 
and 3D printing where models are transformed into real objects. 

• A solution to these problems is to define “polygons” that have curved “edges” and non-flat 
surfaces. Such polygons are called curvilinear polygons and their surfaces are parametric 
surfaces. 

• 3DS Max and other 3D software normally provide two types of parametric surface 
primitives: 

– Patch Grid: Bezier surface – curvilinear surface defined with Bezier curves, and 

– NURBS Surfaces – curvilinear surface defined with B-splines. 

 



Curvilinear Quadrilaterals 
• The parametric surfaces for 3D modelling take the form of curvilinear quadrilaterals – 

quadrilaterals that have parametric curves as their “edges” 

 

• A curvilinear quadrilateral is defined by four curved edges. 

• Defining a curve is more difficult than define a line. Two end points define a line fully, but 
this is not the case of curves – a good way to represent “good ” curves is needed. 

• Ways to define curves: 

– giving the discrete points along the curve – not helpful;  

– using curves that have a formula, e.g., circles, parabola, ellipses – the shapes are 
limited and they may not be the ones we want; 

– approximating curves using some formula – an approach used in many areas, e.g., 
fitting a curve to data;  

– constructing curves from simpler ones by blending – the approach adopted in CG.    

Defining Curves – Polynomials 
• Polynomial: sum of the products of numbers and the alphabets that represent numbers. It 

takes the form 

 

– Where ak are coefficients (real number), n is nonnegative integer.  

– The highest power in a polynomial is called the degree of the polynomial.  

– The order of a polynomial is one more than its degree. 

– Many curves have polynomials as their formulas, e.g., 

– when n=1: c(u) = a0+a1u is a straight line; 

– when n=2: c(u) = a0+a1u + a2u2 is a quadratic curve, e.g., parabolas; 

– when n=3: c(u) = a0+a1u + a2u2 + a3u3  is a cubic curve, … 

 

C(u) = a0 + a1u
1 + a2u

2 + a3u
3 + ...+ anu

n



Cubic Polynomials/Curves 
• Polynomials also provide good approximation to many curves if we can afford to have higher 

degree and more terms.  

• However, higher degree means many coefficients (the a’s in the formula) have to be used to 
define the shape, which is undesirable in CG. 

• In CG, polynomials that have a degree higher than 3, are seldom used. Instead, the cubic 
polynomial (because its highest power is 3) is used. The polynomials take the form: 

 

• This cubic polynomial has 4 parameters (i.e., the a’s), which control the shapes (cubic curves) 
it defines. 

Simple Cubic Curves 
• For a given set of coefficients, we can plot the curve out by evaluating the polynomial for the 

given u values (usually between 0 and 1). 

 

• Because ak
’
 s control the shape of the curve, they are called coordinates (parameters or 

control points) of the curve. 

• By changing the coefficients we can obtain infinite number of different cubic curves 

 

C(u) = a0 + a1u
1 + a2u

2 + a3u
3



 

• Obviously, these shapes are rather limited in terms of the complexity (e.g., it has no bend). 

• With the formula of cubic curves, no matter how the parameters (i.e., the a’s) are varied, 
one will never be able to achieve a shape like this: 

 

• This means the cubic polynomial is not great for graphics applications.  

• However, looking closer at the cubic polynomial reveals something interesting and useful – 
curve blending.  

• Now, take a look of the same curve, but from a different perspective: the cubic polynomial is 
formed by “blending” 4 simpler shapes: 

 

• The polynomial has 4 terms, i.e., a0, a1u, a2u2  and, a3u3 . If we draw them individually: 



 

 

• For this reason, we say that a generic cubic curve is a composite curve: it is obtained by 
blending 4 basic (simpler) curves.   

Basis Functions 
• If we let  B0(u) =1, B1(u)=u, B2(u)= u2  and, B3(u)=u3, and use a different symbol Pi to replace 

the a’s, rewrite these terms, we have    

  c0(u)=P0 B0(u),  

  c1(u)=P1B1(u), 

  c2(u)= P2 B2(u)  and,  

  c3(u)=P3B3(u) 

• Because the shape of B0(u) =1, B1(u)=u, B2(u)= u2  and, B3(u)=u3, are fixed, we call them the 
basis functions.  

• P0  ,P1, P3, and P4  control the weights of each basis function, hence the shapes of the 
blended curves, and are called control points.  

Cubic Polynomial Is Not Good Enough 

• We have shown that the shapes can be obtained from blending the simple basis functions 
are quite simple. 

• This is because the basis functions are too simple: a horizontal line( B0(u)=1), a slant line 
(B1(u)=u), a parabola (B2(u)=u2), and a cubic curve (B3(u)=u3). 

• Borrowing the idea of blending, can we use more sophisticated basis functions so that more 
useful (complex) curves can be created in the same way? 



Better Basis Functions 
• Indeed, better basis functions exist.  

• The following set of basis functions has 4 cubic polynomials/curves: 

 

• This set of basis functions are called Bernstein cubic polynomials (functions). Their shapes 
look like: 

 

• The family of the curves obtained by blending this set of basis functions is called Bezier 
curves - named after a French engineer worked at Renault. 



Bézier Curves 

 

Of course, the shape of Bezier curves are controlled by the coefficients P0, P1, P2, P3 (the weights of 
the basis functions) – we still called them control points 

Properties of A Bezier Curve 
• A Bezier curve has 4 control points and 4 basis functions. 

• Moving any control point changes the entire shape of the curve. 

• The curve passes through the control points at both ends. We say it interpolates the control 
points at both ends and approximates the middle ones. 

• The first and last edges of the control polygon are tangent to the curve at the ending points. 

• The curve always lies within the control polygon. 

Control Points and Control Polygon 
• The convex polygon formed by the control points is called control polygon. 

• Bezier curves always lie inside its control polygon 



 

Limitations 
• Having only 4 control points limits the shapes of the Bezier curves 

• To obtain more complex curves, several Bezier curves need to be jointed together. 

• When doing this, two conditions have to be met to ensure the smoothness of the curve at 
the joining point: 

– geometric continuity (no gap between the segments) 

first order continuity (tangential continuity) 

 

Use of Bezier Curves 
• Creating 2D curves and shapes.  

• Defining 3D surface patches (as called in 3DS max) – using them as the edge of curvilinear 
quadrilaterals. 

• The interior cross-sections of the patch are also Bezier curves. 

• Advantages: to control the shape of the patch, we only need to change a few control points, 
which make shape editing very easy.   



 

Patch Grid Objects 
• Patch Grid objects: Quad Patch & Tri Patch (They have rectangular and triangular patches 

respectively when converted into an editable patch ) 

• An editable patch has several sub-patches, and each sub-patch has vertices and edges and 
handles that control the tangent at a vertex. 

 

B-Spline and NURBS 
Overview 

• B-splines and definitions  

• B-spline as basis functions and B-spine curves 

• NURBS 

• Modelling surface using splines 

Limitations of Bezier Curve 
• Only four control points per segment – poor local shape control 

• Difficult to control the smoothness across neighbouring segments 



 

Better Basis Functions 
• These problems are related to the basis functions and the way Bezier cures are constructed. 

 

• There exists a particular family of curves, called B-splines, from which curves (and surfaces) 
possessing better properties can be constructed. 

• Used as basis functions, B-splines will 

– allow more control points, which means no need for connecting segments, 

– have better local control - changing a control point only affects a small portion of 
the curves. 

B-Splines 
• In CG, spline refers to any composite curve formed with polynomial sections (i.e., each 

section has a polynomial as its function) satisfying specified continuity/smoothness 
conditions along the connection boundaries 

• B-splines are a family of composite curves (B-splines of degree 0, 1, 3, etc). 

• The one we used here is Cubic B-spline 

– It consists of four segments 

– Each segment has its own defining polynomial. 



 

B-Splines: Some Definitions 
• The domain of a spline is called the support of the spline. 

• The conjunctions of the segments are called joints. 

• Knots refer to the parameter values corresponding the conjunctions (or the indices of the 
values if the intervals are equal).  

• Knot vector of a spline is the array of values of knots.  

• E.g. [0, 1, 2, 3, 4] 



 

Cubic B-Spline In Math Form 

 



B-Splines v.s. Bernstein Functions 

 



Create Curves Using B-Spline 
• Just as obtaining Bezier curves by blending Bernstein basis functions, new curves can be 

obtained by blending B-splines.  

• The resulted new curves are called B-spline curves (they are sometimes also called B-
splines). 

B-Spline Curves 
• Like Bezier curve, B-spline curve can be formulated as 

 

– k is the index of knot (remember that we don’t a copy of B-spline at the last 4 knots, 
so n should be 4 less than the total number of knots of a curve)  

– Pk is the weight/control point at knot k (n+1 control points in total) 

– Bk,d is the B-spline at knot k (n+1 copies in total)  

– d is the order of polynomials (for cubic B-spline d=4) 

Arrangement of Basis Functions 

 

Uniform and Non-uniform Intervals 
• If the intervals of parameter u (i.e., knots) are uniform (of equal length), the spline curves 

formed are uniform B-spine 

• Otherwise, the curves are non-uniform 



Construction of Uniform B-Splines 

 

Uniform B-splines v.s. Bezier Curve 

 



 

Non-Uniform B-Splines 
– Non-uniform (uneven) knot intervals: some interval are short or even of zero length, which 

result in distorted basis functions 

 

Non-Uniform Knots 
• Non-uniform intervals are specified by non-uniform knots - knots that are NOT equally 

spaced.  

– e.g., [0, 0.1, 0.2, 0.25, 0.3, 0.5, 0.6 …1] specifies unequal interval lengths,  

– [0, 0.1, 0.2, 0.3, 0.3, 0.4, 0.5… ] specifies a zero interval by using a knot (0.3) twice. In 
this case,  we say the knot (0.3) have a multiplicity of 2. 

Non-Uniform Rational B-Spline 
• NURBS 

• Rational spline is the ratio of two spline functions 



Characteristics of NURBS 
• NURBS have two important advantages over nonrational B-splines 

– They provide an exact representation of conics (straight lines, circles, ellipses, 
parabola, hyperbola). 

– They are invariant with respect to perspective transformation,  

• Nonrational B-splines do not possess this property 

Spline Surfaces v.s. Polygons 
• Bezier curves, splines and NURBS are used to define smooth 2D or 3D shapes 

• The surface created from splines are smooth, which are different from the surfaces defined 
using polygon meshes which are inherently rough and uneven. 

• Spline surfaces are easier to edit. Editing a spline surface is done by manipulating a few 
control points, whereas editing a polygon mesh requires rearrangement of its vertices.   

• Spline surfaces, NURBS surfaces in particular, demand for more computing power to create 
and render than polygon meshes. 

• In standard graphics pipelines, spline surfaces are still rendered in the form of polygons. Ray 
tracing may render spline surfaces directly.   

3DS: Modelling with Splines 
• Use spline to draw a spine “cage” 

 

3DS: NURBS Curves 
• Surfaces can be created from NURBS curves 

• 3DS Max provide two types of NURBS curves:  

– Point curve – the control points on the curve, and  

– CV curve – control points are not on the curve. 

• They are functionally the same. 



 

3DS: Modelling with NURBS 
• Draw cross-sections and “loft” the surface 

 

3DS:  Surface Primitives 
• 3DS provide both Bezier and NURBS surface primitives 

– Patch - the Bezier surface primitive 

– NURBS surface 

• Modelling work can start from such surface primitives and new primitives can be “attached” 
to the current primitive as needed to extend the surface. 

3DS: Patches 
• You can edit a patch by manipulating its control points (you need to convert them into 

editable patch).  

• Two patches can be combined to form a larger surface by  “welding” their control points. 



 

3DS: NURBS Surface 
• Like NURBS curves, there are two versions of NURBS surfaces: point surface and CV surface. 

 

“Fuse” Surfaces 
• Two NURBS surface can be combined by “fusing” or “joining” their control points. 

• Fusing 

– After fusing, the entire surface consist of two “surface elements” 

– You may notice that a ridge of discontinuity is formed  



 

“Join” Surfaces 
• To maintain the continuity between the two surfaces, we can “join” two surfaces.   

 

Lighting and Materials 
Overview 

• The shading problem. 

• Light sources and their properties. 



• Global lighting v.s. local lighting. 

• Phong lighting/reflection model. 

The Shading Problem 
• Shading is the method/process of determining the shade/colour of a pixel. 

• Shading is not a simple problem, at least in practice. Because how accurate/realistic the 
colours of pixels depends upon how well we simulate the interaction between light rays and 
surfaces of objects.   

• As in many CG problems, we face a dilemma here: 

– High accuracy (or visual realism) demands for accurate models for the 
microstructure of surfaces and the interactions between lights (photons) and the 
microstructure. 

– However, accurate models of microstructures are impossible or not practical. 

• Any solution for the shading problem must provide visually acceptable and computationally 
feasible approximation to the following properties or processes:  

– the properties of various light sources, e.g., sun light, light bulbs, etc. 

– the properties of surfaces of different material types,  

– the interactions between lights and the surfaces. 

Lighting & Shading Models 
• A few decades’ research and hardware development have produces some acceptable 

solutions to the shading problem. 

• The solutions normally consist of a lighting model (this lecture) and a shading model (next 
lecture).   

• The lighting model describes how light rays interact with a tiny flat surface patch and 
determines the amount and direction of reflection.  

– The reflected light is what we see (therefore needs to be drawn/rendered). If a 
surface does not reflect light, it is simply invisible. 

– Various models have been proposed. Among them, the Phong lighting model (and 
the various variations) is mostly used in CG packages and applications  

• The shading model/algorithm determines how we evaluate the lighting model on geometric 
primitives, e.g., a triangle or a polygon. For this, we have a few options: 

– Flat shading,  

– Gouraud shading, and  

– Phong shading. 

• These shading algorithms produce good visual results under certain conditions and are 
widely used (More on them next lecture).  



Light Sources 
• Various light sources are used in CG to produce different lighting effects, e.g., sun light 

produce daylight effect, point light produces effect a lump, etc 

• Most of the lights in CG have their physical counterparts, e.g., point light and a light bulb, 
but some do not, e.g., the ambient light.  

• A light source has a number of properties: 

– Colour – spectral frequencies, 

– Intensity – radiance,  

– Geometry – shape (e.g., lamp shades), position and direction, and 

– Directional attenuation – intensity distribution.  

Ambient Light Source 
• Ambient light exists in almost every scene: 

– Objects not directly lit are typically still visible, e.g., the ceiling in this room, 
undersides of desks. 

– This is the result of light scattering – lights bouncing off intermediate surfaces. 

• But ambient light is computationally too expensive to simulate. 

• Therefore a fictional ambient light source is invented to account for the effect of scattered 
light in a scene: 

– No spatial or directional characteristics (therefore, no highlight)  

– Illuminates all surfaces with equal intensity, Iambient  

An Example 

• A scene lit only with an ambient light source 

– Make the scene visible, but 

– Produce chalky scene and has no highlight 



 

Point Light Sources 
• A point light source emits light equally (i.e., the same intensity) in all directions from a single 

point. 

• It is characterised by: 

– A location/position,  

– An intensity (radiance), 

– Attenuation with distance (usually ignored)  

• The directions (angles) of the light rays with respect to the surface normals vary.   

• Light bulbs at some distance are typical point lights.   

• An example of using an ambient and a point light source: 

 

Directional Light Sources 
• For a directional light source, all light rays are parallel.  



• It is characterised by 

– an intensity,   

– a direction (with respect to the surface normal), 

– Distance attenuation (usually ignored)   

– A point light at infinity (or far enough) could be regarded as a directional light 
source (e.g., sunlight) when depth of view is small. 

• The same scene lit with a directional and  an ambient light source. 

 

Spotlight 
• Spotlights are point lights whose intensity falls off directionally. 

• It is characterised by a light cone that has  

– a position (of the apex of the cone), 

– a direction of the main axis, 

– a cutoff angle, α 

– a falloff function.  



 

Falloff Function 
• The falloff function of a spot light is used to describe the angular attenuation. 

• Given a cutoff angle α, and the angle between the axis of the cone and the light ray, θ, the 
cutoff function is expressed as   

 

• where a is the falloff exponent. A large a makes the intensity decrease faster as the angle θ 
increases.  

• If we use two unit vectors spotDirection and lightDirection to represent the directions of 
main axis and the light ray in question, we have 

 

 

I(q) = cosa(q)

 

I(q) = (spotDirection • lightDirection)a



 

Lighting Methods 
• Lighting is about how lights illuminate the scene objects.  

• When simulating lighting in 3D graphics, one can choose to use one of two types of lighting: 

– Global lighting, or 

– Local lighting. 

 

Global Lighting 
• Global lighting takes into account the lights from the light sources AND the lights reflected 

from the objects in scene. E.g., a light source is reflected from an object; the reflected light 
will illuminate a second object; the light reflected from the second object then illuminates 
the 3rd object, and so on. 

• An example of rendering (i.e., shade calculation) using global lighting is ray tracing.  

• This technique tries to mimic the complicated interactions between light rays and the 
surfaces of objects.  

• It can produce a highly realistic scene, but it requires a lot of computing resource to track 
down the paths of light rays, and therefore not very efficient. (It had been the default 
renderer in 3DS Max in the past, but Autodesk is no longer buying the license of Mentalray 
renderer)  



Local Lighting 
• In local lighting, only the lights that come directly from the light sources are accounted for in 

shading calculation.   

• A defect of a strict local lighting model is that objects will not block light that hits them. This 
means that shadows are not automatically created in a local lighting model. 

• Scanline renderer uses this approach. If you develop applications using APIs, this might be 
the only choice unless you develop your own rendering engine.  

• In modern CG package, scanline renderer can produce shadows. In 3DS Max, you can enable 
shadow effect by changing the properties of light sources. 

Reflection Models 
• When considering lighting and shading issues, we usually focus on a small and flat patch of 

surfaces. The shapes of the surfaces are not considered (at this stage).  

• The small patch is normally characterised by:  

– a location, 

– a direction (represented by its normal), 

– a reflectance spectrum (i.e., colour of the surface), and 

– a reflectivity. 

• The reflectance spectrum and the reflective ability are determined by: 

– the atomic properties of the material (decides the colour), and 

– the micro-structures (e.g., matte or gloss) of surface (decide the reflectivity).  

– The true mechanism underlying light reflection is hard to model/describe. 

BRDFs 
• In some applications, an empirical functions called Bidirectional Reflectance Distribution 

Functions (BRDFs) is used for describing the reflectance spectrum and reflectivity of a 
material.  

– The BRDF of a material may be based on the results of numerous experiments.  

– Finding a good BRDF for a material, e.g., human skin, is difficult. Some research still 
need to be done. 

• In practice, BRDFs are usually simplified by simpler reflection functions in which 

– the spectral properties of a material are simplified by assigning a colour to the 
material, and  

– the reflectivity is replaced by a (simpler) relationship between incident intensity 
(irradiance) and reflective intensity (radiance). 

Phong Lighting 
• The various reflection functions used in CG are called lighting models (or reflection models). 



• Phong Lighting model (published in 1973) is one of them and is, arguably, the most popular 
for its simplicity and good visual effect.   

• Other lighting models are similar and can be seen as variations of Phong lighting model. 

• Phong lighting model breaks the reflection from a tiny flat surface into three parts :   

  Total reflection = 

   ambient reflection + diffuse reflection + specular reflection.  

• By this model, different materials have different combinations of these three parts.  

• There is not much theoretical basis for this breakdown, but it produces acceptable results!   

• To calculate each of the three reflection components, the model assumes that a light source 
has three corresponding components:  

• ambient light, Ia  

• diffuse light, Id and  

• specular light, Is  

• It also assumes that a surface has different reflectivity corresponding to the types of lights:  

• the ambient reflectivity, ka ,  

• the diffuse reflectivity, kd,   

• the specular reflectivity, ks, and the shininess of a surface, α, which is larger for 
smooth, mirror-like surfaces. 

• With these assumptions, calculation of reflection can be easily done.  

Ambient Reflection 
• Assume a global ambient illumination in the scene, Ia 

• The ambient light reflected from a surface depends on 

– The surface properties, ka 

– The intensity of the ambient light source (constant for all points on all surfaces ).  

The reflection function is linear (and simple): I = Ia.ka 

• Empirical, no theoretical basis whatsoever. 

Diffuse Reflection 
• Rough surfaces (at the microscopic level) reflect light in ALL directions. Typical surfaces of 

this category include chalk and matte surfaces.  

• Because of the microscopic variations, an incoming ray of light would be reflected with equal 
intensity in any direction over the lit hemisphere. 



 

Lambertian Surfaces 
• Ideal diffuse surfaces are called Lambertian surfaces (chalk and most matte surfaces are very 

close to ideal diffuse surfaces).  

• The reflection from a diffuse surface is calculated according to the Lambert’s cosine law:  

 

where  

– kd is the diffuse reflectivity of the material 

– Id is the intensity of the incident light 

– θ is the angle between the surface normal n and the direction of incident of the light 
ray. 

 

 

• Note that the intensity of reflection is independent of the viewing direction (because equal 
amount is reflected in all directions) 

 

I = Id kd cosq



Specular Reflection 
• Shiny surfaces, e.g.,, mirrors, polished metals, glossy car finish, etc., exhibit specular 

reflection.  

• Light rays cast on a specular surface cause a bright spot known as a specular highlight. 

• For ideal specular surfaces, specular reflection has these properties: 

– highlight appears as the colour of the light, NOT the colour of the surface, 

– highlight appears in the direction of ideal reflection, which is decided by the incident 
direction (For ideal specular surface, the direction of ideal reflection, θr, equals the 
incident angle, θi, as described by Snell’s law),   

– highlight intensity equals the incident intensity, i.e., there is no energy loss in the 
reflection.  

 

Non-Ideal Specular Surfaces 
• Except for mirror-like surfaces, most real world surfaces are non-ideal, so the highlight 

appears softer and less defined (i.e., its appearance/visibility is not restricted to the direction 
of ideal reflection). 

 

• Experiments had shown that most of the reflected light will travel in direction of ideal 
reflection, but some will go in the directions that are slightly off the direction of ideal 
direction. The intensity of specular reflection varies – as the off-angle ϕ increases, the 
intensity drops.  

• Such properties of non-ideal specular surfaces can be captured by the formula: 

 

 

Ir = Is

 

Ir = ksIs(cosf)
a



where  

– ks is the specular reflectivity of the material, 

– Is is the intensity of the incident light, 

– ϕ is the angle between the direction of ideal reflection and the direction of viewing, 

– α characterises how fast the reflection intensity drops as ϕ   increases and is used to 
indicate the shininess of a surface (ie., bigger ϕ represents smoother surfaces). 

Shininess 

 

Put All Together 
• Put all three components of reflection together, we have the formula for the Phong Lighting 

Model 



 

3DS Max: Material Design 
• Design a material in 3DS Max (or in CG in general) is basically a matter of determining the 

coefficients: ka, kd, ks 

– Choose a material slot and select “Standard” for material type  

 

Other Lighting Models 
• There exist many other lighting models that produce better results for special materials, but 

they work basically on the same principle of the Phong lighting model. 

 



Shading 
Introduction 

• The realism of a rendering depends on 

– Geometric models (polygon mesh, NURBS surface, and etc), 

– Local v.s global lighting, 

– Lighting model that simulates 

• how light interacts with a surface,  

• surface properties (materials),  

• light sources (directional, point, etc). 

– Shading models (this lecture). 

Recap: Phong Lighting Model 
• Phong lighting (or reflection) model states that the light reflected from a point on a surface 

consist of three components: 

– Ambient reflection  

• Independent of viewing direction. 

– Diffuse reflection  

• Dependent on the incident angle (the angle between surface normal and the 
direction of light) but not on the viewing direction.  

– Specular reflection  

• Dependent on light source, incident angle and viewing direction. 

Reflection Calculation 



 

Visualisation of Lighting Model 

 

• For matte materials, the diffuse reflection dominates. Little or no specular reflection will be 
found. However, for mirror surfaces, the reflection is mainly specular.  

Shade Calculation 
• In principle, by using a lighting model (e.g., Phong lighting model), one can calculate the 

colour of any point on a surface and therefore determine the colours for all the pixels 
representing the entire surface. 

• However, in practice, such a strategy does not work well or unnecessary when computers 
are not powerful enough and real time performance is more important then realism.  

• Different shade calculation (interpolation) methods have been developed. We call them 
shading models. 



Shading Models 
• In the last lecture, we mentioned that when determining the shades for the pixels of a flat 

patch(e.g., a triangle), we can use different shade-calculation methods: 

– Flat shading: treating the patch as a single point and evaluating the lighting model 
once to have a single colour for all the pixels of the entire patch.  

– Gouraud shading: applying the lighting model to the vertices of the patch to produce 
the vertex shades and then determining the colours of other pixels from them.  

– Phong shading: applying the lighting model to every pixel of the patch to get the 
colour for each of them. 

Flat Shading 
• Flat shading calculate a single shade for each polygon based on its surface normal. 

 

• If a lighting model is chosen, e.g., Phong lighting model, we only need to evaluate the model 
once and assign the colour to all the pixels of the polygon. 

 

• Flat shading is very efficient. 

• It works well under suitable conditions, for example, flat surfaces illuminated with 
directional lights and viewed at distance. 

 

Itotal = kaIa + Iid kd cosq + Ii s ks(cosf)
a( )

i=1

all _ lights

å



 

Problems with Flat Shading 
• In general, flat shading does not produce good visual realism even for objects that indeed 

have flat surfaces. 

• This is because that diffuse and specular reflections depend on incident directions of 
light and viewing. 

• For point light, the incident direction varies across the surface. 

• The viewing direction varies across the surface (if it is large). 

• Result: Patchy surfaces with incorrect highlights. 

 



• When using flat shading, we have to notice that it only produce acceptable results under 
certain conditions: 

– When the light source is (infinitely) far away, so that the incident angle does not 
change across the surface. 

– When the viewer is far away, so that the viewing angles remain the same. 

– When the surface is indeed a flat surface (for example, one of the faces of a cube) 
and is not an approximation of a curved surface. 

– When the surface is matte (or less specular). 

• It is used in applications where rendering efficiency is important. 

Gouraud Shading 
• The model (named after French computer scientist Henri Gouraud, 1971) calculates shades 

for the vertices of a polygon and then the vertex shades/colours are linearly interpolated 
over the polygon. It is also called per-vertex shading.  

• This model uses the “average normals” of neighbouring polygons.  

 

Why Average Normals 
• The reason for using the “averaged normals” is obvious: if the polygons are approximating a 

curved surface (e.g., a sphere), the vertex normals should be orthogonal to the underlying 
curved surface instead of the flat polygons.  

• In addition, the use of average normals gives a smoother transition of colour from one 
polygon to the adjacent polygons, and the seams between the polygons are less obvious. 

• But the implementation of this model can vary: lighting calculation could be done on the 
vertext normals provided directly. If this is the case, to get a smooth shade transition across 
the edges, the normals should be carefully set. 

Pixel Shade Interpolation 
• The shades of other pixels of the polygon are calculated by linear interpolation of the vertex 

shades.  

• Given the vertex colours, c1, c2 and c3, to find the colour at a pixel C, the interpolation is 
carried out in three steps:  

– First, two interpolations are done along two edges. This determines two colours for 
the two points on the edges along the scanline, i.e, A and B  

– Then, interpolation is done along the scanline to find the shade for C 



 

Gouraud Shading Evaluation 
• In general, Gouraud shading produces a decent result for most matte surfaces.  

• For shiny surfaces, the Gouraud shading will produce defects. Since the shading equation is 
only calculated at the vertices, a specular highlight that falls inside the triangle can be 
missed. 

 



 

Phong Shading 
• In Phong shading, each pixel/fragment has its own normal and the pixel normals are 

obtained by interpolating the “average” vertex normals.  

• Phong shading interpolates vertex normals and evaluates the lighting equation for every 
pixel of a polygon. therefore it is also called per-fragment shading.  

• It is computationally more costly than flat or Gouraud shading. 

 

Normal Interpolation 
• The normal at a pixel of a polygon is obtained by linear interpolation of the (average) vertex 

normals. 



 

• Then the shade of the pixel is calculated using the normal and a lighting model (e.g., the 
Phong lighting model). 

Phong Shading Evaluation 
• Usually very smooth-looking results. 

• Computationally much more expensive. 

 

• Phong shading eliminates some defects that Gouraud shading cannot avoid: 

– produce well defined (not spreading) highlights, 

– produce specular highlight that falls within a polygon. 

 



Limitations of Shading Models 
• Both Gouraud & Phong shadings use interpolation at certain stage, therefore they are called 

interpolated shading. 

• These shading models cannot eliminate the polygonal (jagged) boundaries in 
silhouettes/outlines or shadows. 

 

• Interpolated shading causes problems with some shapes.  

• Consider the shading problem for following shape: the average normals (for Gouraud 
shading) and the interpolated normals (for Phong shading) are the same everywhere 

• Both Gourand and Phong shading methods will produce the same colour for all the pixels – a 
strip of constant colour rather than a 3D surface. 

 

 

 

 

 

 

 

 

• Solution 1: Use the surface normals – this is, in effect, the flat shading.  

• By calculate the shades for each flat surface using its surface normal, we obtain alternating 
shades for the flat facets.  

 

 



• Solution 2: Adding small polygon strips along edges and then use interpolated shading. 

 

Perspective Distortion 
• Linear interpolation in screen space does not corresponds to a linear interpolation in world 

space, i.e., the interpolation in world space is nonlinear. 

 

Summary of Shading 
• Flat (constant) shading   

– Approximation only holds for exceptional cases. 

• Gouraud shading  

– Poorly interpolates specular highlights. 

• Phong shading  

– produce better visual realism, but more expansive. 

• Interpolation shading has its inherent problems. 

Texture Mapping 
Use Textures 

• One of the dilemma in computer graphics is visual fidelity vs. rendering speed. 

– With refined geometric models, better visual fidelity will be achieved, but the 
rendering will take longer time, 



– With coarse models, faster rendering is possible, but the quality will suffer. 

• Another problem is some objects, especially the surface properties of the objects, are 
difficult to model 

• Texture mapping is a techniques for solving the modelling and rendering problems of such 
objects.  

2D Texture 
• The most basic form of texture mapping uses a single image as a texture – 2D texture. 

• Regardless of what being used as textures, coordinate systems are needed to specify where 
texels should be sampled from the texture and where on the object they should be placed.  

• Texels may be regarded as the pixels of a texture, but a texel may consists of many pixels of 
a texture image. 

• To fetch a texel from the texture is called to sample a texture. 

Texture Coordinates 
• To map a texture to a surface, we need to establish the correspondence between the texels 

on the texture and the points (fragments) on the surface of a model. 

• This is done by specifying texture coordinates on both the texture image and the object 
model.  

• The texture coordinates for a texture are usually represented by a pair of values, (u, v), and 
called u, v coordinates.  

• The texture coordinates for a model (it might be a surface of a single or a few polygons) is 
called s, t coordinates.  

• Texture coordinates for a texture, (u, v), are normalised coordinates:  

• The lower-left corner of the texture is defined as the origin and has the coordinates 
(0.0, 0.0). 

• The upper-right corner of the texture always has the coordinates (1.0, 1.0), 
regardless of its size or whether or not the texture is a square. 

• In contrast, the texture coordinates on a model, (s, t) could be greater than 1.0, e.g., (0.0, 
2.0). In this case, texture will be repeated     

 



Map (u,v) to (s, t) 

 

• The example shows clearly that the assignment of texture coordinates on the vertices affects 
how the texture being mapped. 

• In general, it is difficult, or even impossible, to achieve uniform, distortion-free texture 
mapping on curved surfaces. 

• Texture mapping algorithms that produce acceptable visual effect for some common shapes, 
such as triangle, cube, cylinder, sphere, etc, are available and implemented in graphics 
libraries and/or APIs. 



Assign Texture Coordinates 

 

Texture Filtering 
• Texture mapping produces good results only if the size and resolution of a texture matches 

the rendered image  of the object. 

• For example, a texture of the size 512 × 512 texels is mapped to a square surface (of any 
size). If the size of the rendered image of the square is close to 512 × 512 pixels, the texture 
will look accurate and natural. Otherwise some visual defects will appear. 

• If the rendered image of a surface consists of more (less) pixels than the number of the 
texels on the texture image, the texture will need to be stretched (compressed) to properly 
cover the surface. This change to texture size is called magnification (minification).  

• The process of calculating pixel colours from the texels of a magnified or minified texture is 
called texture filtering. 

• The aim of texture filtering is to decide the “best” colour for a pixel in such cases.  

Magnification 
• In the case of texture magnification, the texture appears, visually, to have been magnified. 

That is, one texel covers (corresponds to) several rendered/on-screen pixels. 



 

Filtering - Nearest or Linear 
• The nearest filter takes the colour of the nearest texel to as the colour of the pixel.  

– This filtering is fast since only one texel is considered in colour  calculation.  

– Many pixels fall upon one texel and they all take the same colour, which would 
result in a blocky appearance – an effect called pixelation. 

• The linear filter assigns colour to a pixel by linear filtering or bilinear filtering - it takes a 
(distance-) weighted average of the four texels surrounding the texture coordinate (of a 
pixel). 

– Computationally more complex than nearest filtering,  

– Alleviates pixelation,  

– But results in blurred texture. 

Minification 
• In minification, several texels correspond to one pixel on the screen. This means that the 

colours of several texels would affect the color of one pixel.  



 

Filtering - Nearest or Linear 
• As in the case of magnification, the nearest neighbor filter fetches the colour from the texel 

that is closest to the current pixel (i.e., its texture coordinates). 

• A defect of the nearest filtering is aliasing – the smooth curves, boundaries or lines become 
jagged. 

 

• The linear filter uses the weighted average colour of the four closest texels as the color for a 
given pixel.  

• The linear filter can give a slightly better result than the nearest filter, but the aliasing 
problem still exists. 

Mipmapping 
• As the distance between an object and the viewer/camera can change, we cannot decide 

beforehand when to apply magnification or minification filtering to reduce pixelation or 
aliasing. 

• A better approach is to use a set of textures of different sizes and dynamically choose a 
texture size that can roughly maintain the one-to-one correspondence between the pixels 
and the texels.  

• This techniques is called mipmapping – using a pre-calculated, optimised collections of 
images that accompany a main texture, intended to increase rendering speed and reduce 
aliasing or pixelation artifacts.   

• The image collection used in mipmapping is called mipmap chain.  



• A mipmap chain has images of several levels of resolutions. In practice, at each level, the 
image size is half the size of the previous level.  

• The textures do not have to be square, but the chain continues until the last texture has the 
size 1 × 1, e.g., a mipmap chain could contain the textures of sizes 256 × 256, 128 × 128, 64 × 
64, 32 × 32, 16 × 16, 8 × 8, 4 × 4, 2 × 2, and 1 × 1. 

 

• A complete mipmap chain occupies approximately one-third more memory than without 
mipmapping.  

Texture Wrapping 
• As discussed previously, textures are described by a coordinate system: its lower-left corner 

has the coordinates (0, 0) and the upper-right corner has the coordinates (1, 1), regardless of 
its size or whether or not it is a square.  

• What if we assign a pair of texture coordinates, (0.0, 2.0), at a vertex? 

• This can be handled by texture wrapping. Texture wrapping can be done in the following 
ways:  

– repeat/tiled 

– mirrored repeat 

• Note that independent, different wrap modes can be applied to s-direction and t-direction 
of the texture coordinates    

Repeat 
• E.g., according to the texture coordinates of the vertices provided, the original texture is 

repeated three times in both s- and t-directions. 



 

• Use negative coordinates (s, t) 

 

Mirrored Repeat 
• In this mode, texture is mirrored while being repeated: 



 

Bump Mapping 
• Problems of texture mapping 

– Texture mapping does not produce uneven surfaces. 

– Texture mapping does not produce irregular boundaries of objects or their shadows  

 

• A solution to these problems are to use textures to modify the surface geometry. 

• The values of texel (e.g., intensity values of texels) can be used to modify surfaces in several 
ways:  

– Modify the surface normals of polygons, e.g., use the partial derivatives of bump 
map to modify the directions of surface normals. This is the bump mapping in its 
usual sense. 

– Control the height field of rough surfaces, e.g., to modify vertex coordinates – this is 
also called displacement mapping 



Displacement Mapping 
• Bump mapping modifies the normals, but does not change the actual geometry (the minute 

surface structures) 

• This can lead to inconsistent shadow, e.g.,  

 

• Displacement mapping use texture to modify the geometry 

• As a result, a large amount of geometric data (polygons) are introduced.  

Texture Mapping in 3DS 
• The Unwrap UVW modifier is used to assign planar maps to sub-object selections (e.g., 

polygons, faces). 

• E.g., map a T-shirt texture to the top of the character.   



 

Raytracing 
Lighting & Shading Review 

 

Rendering 
• Rendering is the process of image creation, i.e., creating images from given viewpoint, object 

models and light sources using appropriate lighting and shading models.  

• It involves two types of computation: 

– determining where on a surface of an object to perform shade computation. Only 
the points that correspond to image pixels will be evaluated. This can be done 
through, for example, the rasterisation process of the scanline renderer.  



– computing pixel shade using appropriate lighting and shading models 

Typical Scenario 
• Consider the scenario of standard perspective viewing: 

– A scene (object models, lights, etc), 

– A viewer (camera), and a viewing window (image plane – where image will form)  

• We want to create an image of what the viewer sees through this window – to render the 
scene.  

 

• First, the locations of the pixels on imaging plane tell us where we should evaluate the 
shades. 

• For a given image pixel, its shade is the light reflected by the corresponding point on the 
surface – this tells us where on the object to evaluate the lighting equation. 

• To create an image, we have different methods (i.e., rendering methods) to go through all 
the pixels (usually one-by-one) 

– Scanline rendering (or scanline renderer), 

– Raytracing (ray tracers). 



 

Scanline Renderer 
• Evaluate pixel shades one-by-one along horizontal lines (called scan lines) by using 

appropriate lighting and shading models, e.g., the Phong’s. 

 

• The rendering process can be summarised as:  

– At each pixel, determine ALL 3D points corresponding to the pixel and store their 
coordinates in memory. If multiple 3D points correspond to a single pixel, the one 
closest to the viewer will be visible (Z-buffer algorithms).    

– For each 3D point, perform lighting/reflection calculation to get the shade for that 
3D point.  

– Store the calculated shade of the pixel in the memory (frame buffer).  

– Draw an image from frame buffer. 

• The scan line renderer is a part of standard graphics pipeline.  

Some Observations 

• In this process,  



– Only the surfaces (polygons) facing the viewer is considered and their shades are 
evaluated (Hidden and back-facing surfaces are ignored), 

– Only the lights that come directly from the light sources are considered (inter-object 
reflections are ignored). 

• Pros & cons 

– Simple and efficient – a standard rendering method. 

– Some important aspects are ignored 

• Inter-object reflections among mirror-like objects are missing. 

• Refraction is ignored - transparent objects 

• Shadows cast by invisible objects are ignored 

An Example 

 

More Realistic Rendering 
• To achieve a higher level of realism, we need a better rendering method to pick up the 

optics ignored by the scanline renders, i.e., 

– inter-reflection between glossy objects, e.g., mirrors and polished surfaces.  

– refraction from transparent objects, e.g., glass, water, etc.  

– shadows cast by visible and invisible objects 

• The above requirements implies we need a better way to  simulate the true optics.  

• Raytracing provides a conceptually simplest solution to this problem. 



Renderings from Raytracing Renderers 

 

Raytracing 
• Raytracing abandons the concept of scanlines – when working with a pixel, a ray tracing 

algorithm does not follow the order of scanline. 

• In fact, it deals with pixels in blocks. This is reasonable - if a pixel takes the shade of some 
object, it very possible that the nearby pixels also represent the same object.  

 

Principle of Raytracing 
• Ray tracing also use the positions of pixels on imaging plane to decide where on the object 

the shade is evaluated.  

• It determines the point on the object by shooting out a ray from the eye through the centre 
of each pixel (grid) and tracing the path of light backwards toward the scene. 

– It much easier to trace the paths backwards.  



– In practice it is more common to shoot out a number of rays per pixel (and use the 
average shades). 

• We call such rays primary rays (in comparison with secondary rays). 

 

Destinations of Primary Rays 
• A primary ray ends in one of three ways: 

1. goes into infinity. Such rays contribute nothing to image creation, so we do nothing 
about it. 

2. reaches a light source. That means the viewer can see the light source, so the light 
source decides the shade of the pixel. 

3. hits an object. That means the viewer sees a point of the object and we need to 
calculate the reflection from or shade of that point. 

• The shading calculation for the first two cases are simple:  

1. In case 1, we have a dark pixel, and  

2. In case 2, the shade of the pixel is the colour & intensity of the light source. 

3. Case 3 is more interesting (and a bit complicated in comparison).  

When a Ray Hits an Object 
• The shade of the pixel is determined by the intensity of reflected light at that point. 

This reflection can be evaluated using appropriate lighting/reflection model, e.g., 
Phong’s.  

• Of course, the reflection depends on: 

• Light sources 



• The amount of light reaching this point from the various light sources 
(including the scattered lights from other objects).  

• Material. The reflective and colour properties of the surface (material). 

 

Secondary Rays 
• To calculate the shade for a point on object A, we need to send out rays from that point – 

these rays are called secondary rays (v.s. primary rays). 

• Three types of secondary rays are sent out: 

– rays to each light source to see which light source can be reached (free of obstacles 
that block lights) 

– a ray in the direction of reflection if the surface is glossy (reflective). 

– a ray in the direction of refraction/transmission if the object is transparent. 

 



Secondary Rays: Rays to Light Sources 
• If a ray succeeds in reaching a light source, then the point is illuminated by the source (e.g. 

I1) 

• Otherwise it is not illuminated by the light source, and hence is in the shadow of a blocking 
object. (e.g. I2 and object B) 

• Therefore the rays to light sources are called shadow rays (or shadow feelers). 

 

Shade Calculation 
• If a point is illuminated by a light source (e.g. I1), the reflection from that point can be 

calculated from the known position of the light source, the surface normal and the direction 
of the viewer. 

• We have known this already, e.g., use the Phong lighting model to do the job. 

Secondary Rays: Reflective Ray 
• The ray cast in the direction of reflection is used to check if any light comes from the 

direction of reflection. 

• If the reflection ray hits an object, the contributions (to the shade of the pixel) from the 
object has to be considered.  

• Doing so makes it possible to produce the mirror effect. 

 



Secondary Rays: Transmission Rays 
• Similarly, the ray cast in the direction of refraction is for checking contributions from light 

rays that come through refraction (i.e., rays reach the point by passing through object A ). 

• This makes it possible to produce the lens/transparency effect. More on this topic later. 

 

Ray Diagram 
• The process has shown that a primary ray spawns a few secondary rays when it hits a 

surface. 

• The structure of the rays can be illustrated by a simple diagram called ray tree. 

 

Tracing Deeper 
• In reality, the transmission and reflection rays will not stop when they hit an object. They 

will keep going in space.  

• To trace the reflective and transmission rays further down their paths, we treat them in the 
exactly the same way as we do with the primary rays. 

• The ray tree becomes: 



 

• Now the ray tree is formed of two levels of simple ray-tracing – we say the ray-tracing 
depth/level is 2.  

Simple Ray Tracing 
• If we determine the shade of a pixel by tracing all the secondary rays and stop tracing the 

transmission and reflection rays any further, then we have performed the simple ray tracing 
(or standard ray tracing as called by some). 

 

Simple Ray Tracing v.s. Scanline Rendering 
• Simple/standard ray tracing produces renderings no better than those produced by a 

scanline renderer. 

• It can pick up the shadows cast by the objects.  

• But modern scanline renderers can handle shadows, too (as a property of light). 

• Inter-reflection has not been properly handled  

• But much slower than the scanline renderer. 

• Ray tracing does not need: 

• polygon clipping, 

• z-buffer depth ordering, 

• perspective transform. 

• But it needs to determine where the primary rays end. 



• Time consuming. 

• Binary tree or octree algorithm can find a use here 

Tracing T and R Rays 
• When mirror-like objects face  each other, we expect to see the effect of “images of images” 

– the result of inter-reflection. 

• The simple/standard ray-tracing model cannot produce such optical effect. 

• To handle the inter-reflection among shining objects, we need to trace the T and R rays 
further down.  

 

Tracing Reflective and Transmission Rays 

 



 

Trace Reflective Ray 

 



 

Trace Transmission 

 



 

Observations 

 

Where to Stop? 
• In real world, the optical inter-reflections repeat themselves endlessly. 

• But computers cannot do this without limit.  

• We do not need to trace a depth of more than 10 (a depth of 6 will produce impressive 
result). 



Test Scene 

 

 

 



 

 

 



 

3DS Max Renderer – Preview Window 

 



3DS Max Renderer – Default Scanline Renderer 

 

3DS Max Renderer- Mental Ray Renderer 

 



 

 



 

 

Some Limitations 
• The ray tracing scheme we have considered produces much better renderings than scanline 

renderers, but it is not perfect. 

• First, the rays are traced from the eye, which means 

– Refraction is not physically correct (incident angle and refraction angle are 
different),  

– Unable to render the caustic (focusing) effects produced by lens, which requires 
tracing starts from light source.  



•  

 

Other Raytracing Methods 
• Bidirectional ray tracing: tracing is initiated from both the viewer and light source sides. 

• Strategy 

– Cast limited number of light rays ( called photons) from each light source and trace 
their paths (Why limited number? in which direction?)  

– Accumulate number of hits (photons) on surfaces 

– Trace rays from viewer's eye, and determine the pixel shading according to the 
number of hits collected at a particular surface point 



 

Bidirectional Example 

 



Effects of Number of Rays 

 

Introduction to Image Based Approaches 
• 3D graphics v.s. photographs 

• Image-based modelling (IBM)  

– 3D graphics v.s. computer vision 

– Some techniques 

• Image-based rendering (IBR)  

– Issues & techniques 

• Some examples 

3D Computer Graphics 
• 3D graphics is about creating images from models - as if we are using a virtual camera 

 

• It is very flexible 



– We can create images for things that do not exist. 

– We can create image from view angles which are difficult/impossible to achieve by 
using real cameras. 

– We can navigate a scene in whatever possible ways. 

– etc.  

• However, all these come at certain costs: 

– Laborious modelling work. 

– Quality of rendered images are not as realistic as photos. 

It takes long time to render, etc. 

Photographs 
• Photographs are taken by real cameras 

– Easy to take, quick to display and high visual fidelity. 

• However 

– It is not always possible to take a photo. 

– Even for a simple object, it can produce infinite number of different photos: you can 
never be sure you have right photos that you need. 

– Not convenient for interactive applications such as navigate a scene – the real 
camera must follow a path in a scene (which is hard sometimes – even by cameras 
onboard drones).  

Image-Based Approaches – Motivations 
• Image-based methods are about getting the best from both worlds 

– Reduce the workload of modelling. 

– Get the visual realism of photos at high speed 

– Keep the flexibility of 3D graphics, e.g., easy production of photos (renderings) at 
any view angles, and easy 3D navigation. 

– Two main categories: 

– Image-based modelling (IBM) 

– Image-based rendering (IBR) 

Image-based Modelling 
• Aims of image-based modelling (IBM): automatic (or nearly automatic) creation of 3D 

models from images to save work of manual modelling. 

• Principles of IBM: computer vision and other techniques are used for acquiring 3D models. 

• The way it works is different from 3D laser scanners. 



3D Model Acquisition Using Computer Vision – Stereo Vision Approach 

 

IBM – Combines Vision and Graphics 

 

Different Visual Cues Can be Used for IBM 
• In image-based modelling, various computer vision methods can be used (or have been 

attempted) for acquiring 3D object models. 



• The methods for creating 3D models of objects vary in principle, efficiency and accuracy.  

• Various visual cues can be used, alone or in combination. This category of methods was 
given a name of shape-from-X, where X could be any of the various visual cues: 

– Shading, texture, motion, stereo, silhouette/contour, and etc. 

Shape-from-Shading 

 

• One can judge the direction of surface normals according to shading info. 

• Normal directions plus other constraints allow shape of the torso to be recovered 

Shape-From-Texture 

 

• If one assume that the elements of texture (texels) have the same shape and size, then 
depth can be recovered 

Shape-From-Silhouette 
• Shape-from-silhouette system consists of a motion platform (turntable) and a stationary 

video camera.  

• As the object spins on the turntable, video images are captured, the turntable angle is 
computed, and silhouettes are computed. 



 

• Each silhouette, together with the corresponding centre of projection of the camera, defines 
a generalized cone in space within which the object must lie.  

• The intersection of these cones in 3D defines a bounding volume for the object.   

• Different techniques can be used for computing and representing this volume, such as an 
octree representation. 

• Obviously, such approaches are not suitable for hollow objects or objects that have a lot of 
self-occlusion.  

 

Shape from Stereo Vision 
• Passive 2-camera system for triangulating 3D position of points in space to generate a depth 

map of an object or a scene. 



 

Example 

 

Image-based Rendering 
• Image-based rendering tries to avoid direct use of accurate 3D models in creating photo-

realistic renderings. 

• There are two types of IBR applications 

– Traditional image-based rendering  



• Create novel views from images: This includes techniques such as image 
warping, view interpolation 

• No geometric modelling is involved 

– Augmented reality – Insert virtual objects into photos/videos of real scenes so that 
the photos/ videos contain the objects that do not exist in reality 

Image Warping 

 

Image Morphing 
• Involves two or more images of the same object from different view directions.  

• Morphing calculation requires the followings:  

– Two images and their projection matrices – the perspective projection that simulate 
the optics of the cameras.  

– Correspondences between pixels/features in the two images, which can be 
established through feature-matching or user-interactions.  

• No a priori knowledge of 3D shape information is needed.  



 

Augmented Reality (AR) 
• AR refers to applications when synthetic objects are rendered into videos of real-world 

scenes. 

– E.g., a piece of furniture, a digital creature or actor needs to be rendered seamlessly 
into a video of the real scene.  

• The task involves two sub-tasks: 

– Insertion of virtual objects with correct viewing conditions (i.e., correct sizes, 
orientations and positions). This is to guarantee the geometry of the virtual objects 
visually correct.     

– Ensuring the synthesized objects be lit consistently within their environments – to 
guarantee visual realism. This requires a proper simulation of the interplay of lights 
between the objects and their neighbours – this problem is called image-based 
lighting. 

Insert Virtual Objects 
• To insert synthesized objects with correct viewing positions, we need to know the camera 

parameters with which the photos/videos are taken. E.g., the focal length, position and 
orientation of the camera. 

• Finding out camera parameters from images is a typical computer vision problem – camera 
calibration. 

– Some features on the images could be used to calibrate the camera. 

– Some good (computer vision) algorithms exist, e.g., Tsai’s method. 

Example 



 

• A virtual object (a tea pot) is added to image/video of a real scene. 

• The corners of the black polygons have been used to define the coordinate system for 
specifying the position and orientation of the teapot. 

Image-Based Lighting 
• IBL is about assigning correct illumination to virtual objects 

• The aims of IBL is to ensure the virtual objects to be lit consistently within their 
environments, which is important for good visual realism. 

– See the example in the previous slide 

• Image-based lighting is difficult  

– Much more difficult than the standard lighting problems. 

– We don’t have the information of light sources or the models of the objects in the 
scene. It is difficult (if possible at all) to recover them from photos/videos. 

• Two sub-problems: 

– how to measure and model the 3D light structure from photos/videos, 

– how to estimate the interplay of light among the scene objects without knowing 
their models.  

• We use an example to illustrate the issues of and possible solutions for image-based lighting. 

Example 

• A photo of a real scene (left image). Virtual objects (a white ball, etc, right image) will be 
inserted into the photo/video. 

 

• We want the insertion to be seamless:  

– correct view angle,  



– correct lighting,  

– correct reflection of other scene objects on the surface of the inserted object. 

Camera Parameters 
• Camera parameters can be recovered if we have access to the physical camera and scene.  

• In this example, special scene objects (special patterns – the black triangular shapes) and a 
camera calibration algorithm are used for recovering camera parameters. 

Illumination Estimation 
• To estimate lighting condition, one needs to know: 

– light sources (intensity and positions). 

– scene structure (what is the shape of the ? Where are the light sources? what other 
objects are in the room? What are the shapes, location and the surface properties of 
these objects?). 

• Answers to these questions are impossible without an assessment of the physical 
environment.  

Acquiring Lighting Model 
• However, if one has the access to the physical environment, a light probe (a mirrored ball) 

can be used to record lighting conditions in the environment. 

• The image of the light probe gives the information about the light sources and their 
locations. 

 

• Mapping the image from a light probe onto a box (assuming the room has a normal box-like 
structure) to create an environment map. 

 



• The environment map can be mapped onto virtual objects. 

• The method has many limitations, such as the need for installation of a physical probe, no 
information of light and 3D structure, etc. 

• The example shows what need to be done to achieve high quality of augmented reality. 

• We still do not have a good solution to the problem of recovering illumination from 
images/videos.   

Finally 
• You won’t find the materials for this lecture in the major graphics texts since the problems 

are largely still research matters. 

• If interested, I recommend you check the SIGGRAPH papers and course notes. 

Computer Animation Overview 
Applications 

• Special Effects (Movies, TV) 

• Video Games 

• Virtual Reality 

• Simulation, Training, Military 

• Medical treatment 

• Robotics 

• Visualization 

• Communication 

Types of Animation 
• According to the way that motions are created, animation can be classified into: 

– Keyframe animation 

• interpolation 

– Character animation 

• Hierarchical modelling and kinematics 

• Motion capture 

– Physics simulation 

• Rigid body simulation 

• Laws of physics (dynamics, mechanics) 

– Procedural 

• L-system, fractal geometry, wave functions 

• Plants, water, clouds, gaseous phenomena 



Theories and Technologies Behind Computer Animation 
• Robotics 

– Kinematics of hierarchical structure 

• Mechanics  

– Rigid body mechanics 

– Biomechanics 

• Dynamics 

– Fluid dynamics 

– Aerodynamics 

• Motion capture technology 

– computer vision, image processing, object tracking, etc. 

• Artificial intelligence 

• path planning, swarm intelligence, flocking, etc 

Animation Tools 
• Maya 

• 3D Studio 

• Lightwave 

• Blender 

Many more… 

Industrial Computer Animation Production Pipeline 
• Production pipeline: 3 stages 

– Pre-production stage 

– Production stage 

– Post-production stage 

Stage 1: Pre-Production 
• Conceptual Design 

– Story/game idea development, scriptwriting/game design documentation 

– Storyboarding - translate story into images 



 

– Overall style, visual look, colour scheme - by painters, sculptors, illustrators, etc  

 

Stage 2: Production 
• Modelling/character development 

 

 



 

 



 

 

• Dialogue, soundtracks, etc.  

Stage 3: Post-Production 
• Digital editing, recorded on video film for release 

Keyframing and Principles of Animation 
Keyframing 

• A traditional animation technique. 

• Artists to generate “key” frames/pictures at particular moment in animation timeline - this 
called “keyframes”. 

• Additional "in-between" frames are drawn by less experienced persons. 



 

Interpolation 
• Nowadays, the in-between frames are drawn automatically by computers 

– "Averaging" the parameters and attributes contained in keyframes, e.g., shape, 
position, pose or surface attributes, e.g., colours. 

• The techniques for creating the in-betweens are usually interpolations. 

A Bouncing Ball 
• Suppose we know the extreme positions at 3 instants along the timeline of a ball that 

bounces on the ground. How should we create an animation to simulate the motion of the 
ball? 

 

• The three extreme positions are used as keyframes – they characterise the path of the ball. 

• What shape should the path have? 

 

• A path contains location (we ignore the spin of the ball) and timing information.  



• Suppose we draw the ball at equal time intervals, which path is more realistic? Why?  

 

Speed of the Ball 

 

• Some factors to consider: 

– Requirements on motion accuracy (For example, is the ball an insignificant element 
of a bigger system, e.g., particle system?);  

– Easiness of obtain the data of the true motion of an object; 

– Computing power, etc. 

• Depending on applications, any one of the following paths might be acceptable. 

 

Linear Interpolation 
• Linear interpolation creates inbetween frames by assuming an object travels equal distance 

(arc length) in equal time along straight or curved paths. 

• In the case straight line path, this implies: (1) constant speed (2) object (abruptly) changes its 
direction of motion at keyframes. 

 



• In the case of curved paths, the speed (the distance traveled per unit time)  is constant, but 
direction of travel changes. 

• Note: When referring to both direction and speed, we use the term velocity. 

• Result  

– The shape of the path is correct - the parabolic path of projectile under the influence 
of gravity. 

– But the speed is incorrect. E.g., the ball's speed at top should be close to zero. 

 

Nonlinear Interpolation 
• In nonlinear interpolation, an object no longer travels equal distance in equal time. 

• The velocity (speed and direction) of an object changes, i.e., it has accelerations and 
decelerations.  

 

• In animation, these acceleration/decelerations are called, and implemented through, 
“easing”  - “ease-in” and “ease-out” (or “slow-in” and “slow-out”) around a keyframe. 

• Notice that the ease-ins and ease-outs are usually not dynamically correct/accurate. But the 
result is visually acceptable. 

• As you may have noticed, in 3DS Max, the nonlinearity of paths are controlled through 
manipulating the “tangents” at keyframes (Try to use the 3ds curve editor in practical 
sessions).  

Principles of Animation 
• Disney Studio developed some principles of animation  (starting in the 1930’s) for traditional 

hand-drawn cartoon character animation: 

– for making good animation 

• Fluid, natural, realistic motion 

• Effective ways of telling the story 



– for training young animators better and faster 

• These principles are applicable to all sorts of animation, computer animation included. 

12 Animation Principles 

• Extremes 

• Squash and Stretch 

• Anticipation 

• Staging 

• Ease-In and Ease-out 

• Arcs 

• Exaggeration 

• Timing 

• etc 

Extremes 
• Extremes refer to extreme positions, angles, etc. 

• They usually define the poses or actions of a character.  E.g. for a jump: 

– the start 

– the lowest crouch 

– the lift-off 

– the highest part 

– the touch-down 

– the lowest follow-through 

• Extremes are used to define keyframes. 

• In comparison, the frames in between the keyframes (called “inbetweens”) do not introduce 
a lot new info about an action. 

Arcs 
• Natural motions tend NOT to be in straight lines, instead should be curved arcs. 

– Just doing straight-line interpolation gives robotic, weird movement.  

– That's why linear interpolation doesn't always work. 

• They are also part of physics 

– gravity causes parabolic trajectories; 

– joints cause circular motions; 

– etc. 



Squash and Stretch 
• Rigid objects look robotic – let them deform to make the motion more natural and fluid. 

• Accounts for physics of deformation 

– Communicates to viewer what the object is made of, how heavy it is, etc. 

• It might be used for exaggeration of impact force, hurt, pain etc., e.g. banging a face against 
a wall. 

• Volume conservation in deformation: if you squash in one dimension, stretch in another to 
keep the mass/volume constant. 

 

• Stretch also accounts for persistence of vision (after effect of human vision) 

– An image persists in our vision for a while – fast moving objects leave blurred 
streaks.  

– Without this attribute, we would have problems to watch films/videos. 



 

Anticipation 
• Helps to guide the audience's eyes to where and/or what action is about to occur. 

– Signals what is about to happen, and where it is going to happen. 

• Often physically necessary, and also indicates how much effort a character is making (by 
using exageration). 

– The preparation before a motion. E.g. crouching before jumping, pitcher winding up 
to throw a ball, etc. 

 

Staging 
• Staging is about guiding the attention of the audience to the focus of the scene - center of 

interest. 

• But remember: 

– Audience can only see one idea at a time. 



– Avoid confusing the audience by having two or more things happen at the same 
time. 

 

• Staging is also about creating contrast. 

– Object of interest needs to be contrasted against rest of scene. 

– Pick strongest and simplest technique. E.g. Still object vs. busy background. 

 

• Staging is also about using background information (object) to enhance the mood and 
intention of a scene. 

 



 

Exaggeration 
• Don’t worry about being physically accurate: convey the correct psychological impression as 

effectively as possible. 

• Exaggerated motion often created special effects 

 

Secondary Motion 
• Secondary motion is the movement that’s not part of the main action (e.g., a dog shakes its 

head), but is physically necessary to support it (e.g., ears flaps as a result of head shaking). 

• Animator has to give the audience an impression of reality, or things look rigid and robotic. 

 

Timing 
• Timing is about the precise moment and the amount of time that a character spends on an 

action. 

• Tempo (pace) and rhythm 

– A slow tempo expresses seriousness, fatigue, caution, intimacy. 



– A lively tempo may express happiness and nervousness.  

Slow-in and Slow-out 
• As having been motioned, slow-in/out are used as a simulation of physics 

– More physics: objects generally smoothly accelerate and decelerate, depending on 
mass and forces. 

– First, second, and third order continuity. 

• It is also used as a techniques for emphasizing the key frames, the most important or 
“extreme” poses 

– Character spends more time near those poses, and less time in the transition. 

– Audience gets better understanding of what’s going on at the key moments. 

 

 



Position and Rotation Interpolation and Transformations 
Position and Orientation 

 

Position Interpolation 

 



 

 


